AAAAAAAAAAAAAAAAAA

MPI for Scalable Computing
(continued from yesterday)

Bill Gropp, University of lllinois at Urbana-Champaign
Rusty Lusk, Argonne National Laboratory

Rajeev Thakur, Argonne National Laboratory

Costs of Unintended Synchronization

Unexpected Hot Spots

= Even simple operations can give surprising performance

behavior.
= Examples arise even in common grid exchange patterns

= Message passing illustrates problems present even in shared

memory

— Blocking operations may cause unavoidable stalls

Mesh Exchange

= Exchange data on a mesh

Sample Code

= Doi=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL,&
nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Recv(edge(1,i), len, MPl_REAL,&
nbr(i), tag, comm, status, ierr)
Enddo

Deadlocks!

= All of the sends may block, waiting for a matching receive (will

for large enough messages)

= The variation of
if (has down nbr) then
Call MPIl_Send(... down ...)
endif
if (has up nbr) then
Call MPI_Recv(... up ...)
endif

sequentializes (all except the bottom process blocks)

Sequentialization

L0\

Start
Send

Send

Start
Send

Send

Recv

Start
Send

Send

Recv

Start
Send

Send

Recv

Start
Send

Send

Recv

Start
Send
Send

Recv

Send

Recv

Recv

Fix 1: Use Irecv

"= Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

= Does not perform well in practice. Why?

Understanding the Behavior: Timing Model

= Sends interleave

= Sends block (data larger than buffering will allow)
= Sends control timing

= Receives do not interfere with Sends

= Exchange can be done in 4 steps (down, right, up, left)

Mesh Exchange - Step 1

= Exchange data on a mesh

10

Mesh Exchange - Step 2

= Exchange data on a mesh

Mesh Exchange - Step 3

= Exchange data on a mesh

Mesh Exchange - Step 4

= Exchange data on a mesh

Mesh Exchange - Step 5

= Exchange data on a mesh

Mesh Exchange - Step 6

= Exchange data on a mesh

]
-~

Timeline from IBM SP

-annmsn -mm- [:]s!m :]wnlnu

= T
Egﬂl_——-—.
N e =

0.01 %5 0.01v0 0.017S 0.01%=0 0.01%5 o0.0130 0.0133 0.0200 0.0205 o.0210 0.0213

Note that process 1 finishes last, as predicted

16

Distribution of Sends

‘SEND' state length distribution

poo2 o0.0003 0.0004

(in seconds)
68 states of 86 (70%)

0.0005

0.0006

0.0007

0.0008

0.0008

17

Why Six Steps?

= QOrdering of Sends introduces delays when there is contention
at the receiver

= Takes roughly twice as long as it should

= Bandwidth is being wasted

= Same thing would happen if using memcpy and shared
memory

18

Fix 2: Use Isend and Irecv

= Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPIl_REAL,nbr(i),tag,&
comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(n_neighbors+i), ierr)
Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)

19

Mesh Exchange - Steps 1-4

= Four interleaved steps

20

Timeline from IBM SP

Ms
-BAHHIEH :IHECU -ISEND :]WAITAI.L

_

=

f
!

il

0.3555 0.3560 0.3565 03570 03575 0.3580 0.3585 0.3590 03595 0.3600

Note processes 5 and 6 are the only interior processors; these
perform more communication than the other processors

21

Lesson: Defer Synchronization

= Send-receive accomplishes two things:

— Data transfer

— Synchronization
" |n many cases, there is more synchronization than required

= Use nonblocking operations and MPI_Waitall to defer
synchronization

22

Datatypes

23

Introduction to Datatypes in MPI

= Datatypes allow users to serialize arbitrary data layouts into a
message stream
— Networks provide serial channels

— Same for block devices and 1/0

= Several constructors allow arbitrary layouts

— Recursive specification possible

— Declarative specification of data-layout

e “what” and not “how”, leaves optimization to implementation (many
unexplored possibilities!)

— Choosing the right constructors is not always simple

24

Derived Datatype Example

012345678 9101112131415161718192021222324

contig. contlg ontig. /[

\ indexed

vector

struct

25

MPI’s Intrinsic Datatypes

= Why intrinsic types?
— Heterogeneity, nice to send a Boolean from C to Fortran
— Conversion rules are complex, not discussed here

— Length matches to language types

e No sizeof(int) mess

= Users should generally use intrinsic types as basic types for
communication and type construction!
— MPI_BYTE should be avoided at all cost

= MPI-2.2 added some missing C types

— E.g., unsigned long long

26

MPI_Type_contiguous

MPI_Type contiguous(int count, MPI|_Datatype
oldtype, MPI_Datatype *newtype)

= Contiguous array of oldtype

= Should not be used as last type (can be replaced by count)

L y,

v —__ J
contig.

L struct)

contig.

27

MPI_Type_vector

MPI1_Type_vector(int count, int blocklength, int stride,
MP|_Datatype oldtype, MPI|_Datatype *newtype)

= Specify strided blocks of data of oldtype

= Very useful for Cartesian arrays

i

-

~ struct struct
vector \

-

vector

/ struct struct

28

MPI_Type_create_hvector

MPI_Type create hvector(int count, int blocklength, MPI_Aint

stride, MPI_Datatype oldtype, MPI_Datatype *newtype)

= (Create non-unit strided vectors

= Useful for composition, e.g., vector of structs

L I) ¢ I)
N N A4 N
struct struct struct struct

N

Hvector

29

MPI_Type_indexed

MPI_Type indexed(int count, int *array_of blocklengths,
int *array _of displacements, MPI_Datatype oldtype,
MPI|_Datatype *newtype)

= Pulling irregular subsets of data from a single array (cf. vector
collectives)

— dynamic codes with index lists, expensive though!

— blen={1,1,2,1,2,1}
— displs={0,3,5,9,13,17}

30

MPI_Type_create_indexed_block

MPI|_Type create indexed block(int count, int blocklength,
int *array_of displacements, MPI_Datatype oldtype,
MPI|_Datatype *newtype)

= Like Create _indexed but blocklength is the same

— blen=2
— displs={0,5,9,13,18}

31

MPI_Type_create_hindexed

MPI|_Type create hindexed(int count, int *arr_of blocklengths,
MPI1_Aint *arr_of displacements, MP| _Datatype oldtype,
MPI|_Datatype *newtype)

= |ndexed with non-unit displacements, e.g., pulling types out
of different arrays

LVJKW) -

struct struct struct

32

MPI_Type_create_struct

MPI|_Type create struct(int count, int array_of blocklengths],
MPI1_Aint array_of displacements[], MPIl_Datatype
array_of types[], MPI_Datatype *newtype)

= Most general constructor, allows different types and arbitrary
arrays (also most costly)

il
—

struct

33

MPI_Type_create_subarray

MPI|_Type create subarray(int ndims, int array_of sizes[],
int array_of subsizes]], int array_of starts][], int order,
MPI|_Datatype oldtype, MPI_Datatype *newtype)

= Specify subarray of n-dimensional array (sizes) by start (starts)
and size (subsize)

(0,0)|(1,0)|(2,0) ((3,0)
(0,1)|(1,1)((2,1)|(3,1)

(o,zjﬁuz) (2,2)](3,2)
) [

(0,3) |(1,3) {(2,3)(1(3,3)

34

MPI_Type_create_darray

MPI|_Type create darray(int size, int rank, int ndims,
int array_of gsizes][], int array_of_distribs[], int
array_of dargs[], int array_of psizesl], int order,

MPI_Datatype oldtype, MPI_Datatype *newtype)

= Create distributed array, supports block, cyclic and no

distribution for each dimension

— Very useful for I/O

(0,0)

(1,0)

(2,0)

(3,0)

(0,1)

(1,1)

(2,1)

(3,1)

(0,2)

(2,2)

(3,2)

(0,3)

(1,2)
(1,3)

(2,3)

(3,3)

MPI_BOTTOM and MPI_Get_address

= MPI_BOTTOM is the absolute zero address

— Portability (e.g., may be non-zero in globally shared memory)
= MPI_Get_address

— Returns address relative to MPI_BOTTOM

— Portability (do not use “&” operator in C!)

= Veryimportant to
— build struct datatypes

— If data spans multiple arrays

36

Commit, Free, and Dup

= Types must be committed before use
— Only the ones that are used!
— MPI_Type_commit may perform heavy optimizations (and will
hopefully)
= MPI_Type_free
— Free MPI resources of datatypes

— Does not affect types built from it

= MPI_Type_dup
— Duplicates a type

— Library abstraction (composability)

37

Other Datatype Functions

= Pack/Unpack
— Mainly for compatibility to legacy libraries

— Avoid using it yourself

= Get_envelope/contents
— Only for expert library developers

— Libraries like MPITypes! make this easier

= MPI _Type create resized

— Change extent and size (dangerous but useful)

http://www.mcs.anl.gov/mpitypes/

38

Datatype Selection Order

= Simple and effective performance model:

— More parameters == slower
= contig < vector < index_block < index < struct

= Some (most) MPIs are inconsistent

— But this rule is portable

W. Gropp et al.: Performance Expectations and Guidelines for MPI Derived Datatypes

39

Collectives and Nonblocking Collectives

40

Introduction to Collective Operations in MPI

= Collective operations are called by all processes in a

communicator.

= MPI_BCAST distributes data from one process (the root) to all
others in a communicator.

= MPI_REDUCE combines data from all processes in the
communicator and returns it to one process.

" |n many numerical algorithms, SEND/RECV can be replaced by
BCAST/REDUCE, improving both simplicity and efficiency.

41

MPI Collective Communication

= Communication and computation is coordinated among a

group of processes in a communicator

= Tags are not used; different communicators deliver similar
functionality

= Non-blocking collective operations in MPI-3

= Three classes of operations: synchronization, data movement,
collective computation

42

Synchronization

MPI BARRIER (comm)
— Blocks until all processes in the group of communicator comm call it

— A process cannot get out of the barrier until all other processes have
reached barrier

= Note that a barrier is rarely, if ever, necessary in an MPI program

= Adding barriers “just to be sure” is a bad practice and causes unnecessary
synchronization. Remove unnecessary barriers from your code.

= One legitimate use of a barrier is before the first call to MPI_Wtime to
start a timing measurement. This is to ensure that all processes start that
portion of the code at the same time.

= Avoid using barriers other than for this.

43

Collective Data Movement

PO

P1

P2

P3

PO

P1

P2

P3

|

Broadcast

Scatter

Gather

44

More Collective Data Movement

PO A A/ B/ CD
P1 B A”gather ABICID
P2 |C A|B|C|D
P3 D A/ B C|D
PO a0|A1|A2|A3 A0 | BO | CO | DO
PL IBo|B1|B2|B3 Alltoall ~ |A1|B1|c1|D1
2 lco|c1|c2|cs A2|B2|C2 |D2
P* |po|p1|D2|D3 A3|B3|C3|D3

45

Collective Computation

PO

P1 - Reduce
P2 |c

P3 [p]

PO

P1 Scan
P2

P3

46

MPI Collective Routines

= Many Routines: MPI ALLGATHER, MPI ALLGATHERV,

MPI ALLREDUCE, MPI ALLTOALL, MPI ALLTOALLV,
MPI BCAST, MPI GATHER, MPI GATHERV, MPI REDUCE,

MPI REDUCESCATTER, MPI_ SCAN, MPI SCATTER,
MPI SCATTERV

= “All” versions deliver results to all participating processes

= “WV” versions (stands for vector) allow the chunks to have different

sizes

= MPI ALLREDUCE,MPI REDUCE, MPI REDUCESCATTER, and
MPI_ SCAN take both built-in and user-defined combiner functions

47

MPI Built-in Collective Computation Operations

= MPI_MAX

= MPI_MIN

= MPI_ PROD

= MPI_SUM

= MPI LAND

= MPI_LOR

= MPI_ LXOR

= MPI_ BAND

= MPI BOR

= MPI_BXOR

= MPI MAXLOC
= MPI_MINLOC

Maximum

Minimum

Product

Sum

Logical and

Logical or

Logical exclusive or
Bitwise and

Bitwise or

Bitwise exclusive or
Maximum and location
Minimum and location

48

Defining your own Collective Operations

= Create your own collective computations with:

MPI OP_ CREATE (user fn, commutes, &op);
MPI_OP_FREE (&op) ;

user fn(invec, inoutvec, len, datatype)

= The user function should perform:
inoutvec[i] = 1invec[i] op 1inoutvec]|i];

fori from 0 to len-1

= The user function can be non-commutative, but must be
associative

Nonblocking Collectives

50

Nonblocking Collective Communication

" Nonblocking communication

— Deadlock avoidance

— Overlapping communication/computation

= Collective communication

— Collection of pre-defined optimized routines

= Nonblocking collective communication

— Combines both advantages
— System noise/imbalance resiliency

— Semantic advantages

51

Nonblocking Communication

Semantics are simple:

— Function returns no matter what

— No progress guarantee!

E.g., MPI_Isend(<send-args>, MPl_Request *req);
Nonblocking tests:

— Test, Testany, Testall, Testsome

Blocking wait:

— Wait, Waitany, Waitall, Waitsome

52

Nonblocking Collective Communication

= Nonblocking variants of all collectives
— MPI_lbcast(<bcast args>, MPI_Request *req);

= Semantics:

— Function returns no matter what

— No guaranteed progress (quality of implementation)
— Usual completion calls (wait, test) + mixing

— Out-of order completion

= Restrictions:

— No tags, in-order matching

— Send and vector buffers may not be touched during operation
— MPI_Cancel not supported

— No matching with blocking collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
53

Nonblocking Collective Communication

= Semantic advantages:

— Enable asynchronous progression (and manual)
e Software pipelinling

— Decouple data transfer and synchronization
* Noise resiliency!

— Allow overlapping communicators

e See also neighborhood collectives

— Multiple outstanding operations at any time

e Enables pipelining window

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
54

A Non-Blocking Barrier?

= What can that be good for? Well, quite a bit!

= Semantics:

— MPI_Ibarrier() — calling process entered the barrier, no
synchronization happens

— Synchronization may happen asynchronously

— MPI_Test/Wait() — synchronization happens if necessary

= Uses:

— Overlap barrier latency (small benefit)

— Use the split semantics! Processes notify non-collectively but
synchronize collectively!

55

Nonblocking And Collective Summary

* Nonblocking comm does two things:
— Overlap and relax synchronization

= Collective comm does one thing
— Specialized pre-optimized routines
— Performance portability

— Hopefully transparent performance

* They can be composed

— E.g., software pipelining

56

One-Sided Communication

57

One-Sided Communication

= The basic idea of one-sided communication models is to
decouple data movement with process synchronization

— Should be able to move data without requiring that the remote
process synchronize

— Each process exposes a part of its memory to other processes

— Other processes can directly read from or write to this memory

Global
Address

Space Private Private Private Private

Memory < Memory Memory Memory
Region Region Region Region

58

\ |
Comparing One-sided and Two-sided Programming

Process O Process 1
SEND(data) D
Even the =
sending L
process is A
delayed Y
RECV(data)
Process O Process 1
PUT(data) — ‘ D
Delay in o c
process 1 GET(data) L
does not
A
affect > y
process 0 <

59

Advantages of RMA Operations

= Can do multiple data transfers with a single synchronization
operation
— like BSP model

= Bypass tag matching
— effectively precomputed as part of remote offset

= Some irregular communication patterns can be more
economically expressed

= Can be significantly faster than send/receive on systems
with hardware support for remote memory access, such as
shared memory systems

60

Irregular Communication Patterns with RMA

" |f communication pattern is not known a priori, the send-
recv model requires an extra step to determine how many

sends-recvs to issue

= RMA, however, can handle it easily because only the origin

or target process needs to issue the put or get call

= This makes dynamic communication easier to code in RMA

61

What we need to know in MPlI RMA

= How to create remote accessible memory?
= Reading, Writing and Updating remote memory
= Data Synchronization

= Memory Model

62

Creating Public Memory

= Any memory created by a process is, by default, only locally
accessible
— X =malloc(100);

= Once the memory is created, the user has to make an explicit
MPI call to declare a memory region as remotely accessible
— MPI terminology for remotely accessible memory is a “window”

— A group of processes collectively create a “window”

= Once a memory region is declared as remotely accessible, all
processes in the window can read/write data to this memory

without explicitly synchronizing with the target process

63

Remote Memory Access Windows and Window
Objects

Process 0 Process 1
Get

(_

\ T

Put
window Process 2 Process 3
> \
\
O [
= address spaces = window object

64

Basic RMA Functions for Communication

= MPI Win create exposeslocal memory to RMA operation by other
processes in a communicator

— Collective operation
— Creates window object

= MPI Win free deallocates window object

= MPI Put moves data from local memory to remote memory

= MPI Get retrieves data from remote memory into local memory
= MPI Accumulate updates remote memory using local values
= Data movement operations are non-blocking

= Subsequent synchronization on window object needed to ensure
operation is complete

Window creation models

= Four models exist
— MPI_WIN_CREATE

e You already have an allocated buffer that you would like to make
remotely accessible

— MPI_WIN_ALLOCATE

e You want to create a buffer and directly make it remotely accessible

— MPI_WIN_CREATE_DYNAMIC

e You don’t have a buffer yet, but will have one in the future

— MPI_WIN_ALLOCATE_SHARED

e You want multiple processes on the same node share a buffer

e We will not cover this model today

66

MPI_WIN_CREATE

p

o

\
int MPI_Win_create(void xbase, MPI_Aint size,
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)
)

= Expose a region of memory in an RMA window

Only data exposed in a window can be accessed with RMA ops.

= Arguments:

base - pointer to local data to expose

Size - size of local data in bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)
info - info argument (handle)

comm - communicator (handle)

67

Example with MPI_WIN_CREATE

int main(int argc, char ** argv)
{

int *a; MPI Win win;

MPI Init(&argc, &argv);

/* create private memory */

a = (void *) malloc (1000 * sizeof(int));

/* use private memory like you normally would */

a[0] = 1; al[l] = 2;

/* collectively declare memory as remotely accessible */

MPI Win create(a, 1000*sizeof(int), sizeof(int), MPI_ INFO NULL,
MPI COMM WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return O;

68

MPI_WIN_ALLOCATE

p

o

\
int MPI_Win_allocate(MPI_Aint size, int disp_unit,
MPI _Info info,
MPI_Comm comm, void xbaseptr, MPI_Win *xwin)
%

= Create a remotely accessible memory region in an RMA window

Only data exposed in a window can be accessed with RMA ops.

= Arguments:

Size - size of local data in bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)
info - info argument (handle)

comm - communicator (handle)

baseptr - pointer to exposed local data

69

Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{
int *a; MPI Win win;

MPI Init(&argc, &argv);

/* collectively create remotely accessible memory in the
window */

MPI Win allocate(1000*sizeof(int), sizeof(int), MPI_ INFO NULL,
MPI_COMM WORLD, &a, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return O;

70

MPI_WIN_CREATE_DYNAMIC

[int MPI_Win_create_dynamic(.., MPI_Comm comm, MPI_Win *win)}

= Create an RMA window, to which data can later be attached

— Only data exposed in a window can be accessed with RMA ops
= Application can dynamically attach memory to this window

= Application can access data on this window only after a
memory region has been attached

71

Example with MPI_WIN_CREATE_DYNAMIC

int main(int argc, char ** argv)

{

int *a; MPI_Win win;

MPI Init(&argc, &argv);
MPI Win create dynamic (MPI_INFO NULL, MPI_ COMM WORLD, &win);

/* create private memory */
a = (void *) malloc (1000 * sizeof(int)) ;
/* use private memory like you normally would */

a[0] =1; al[l] = 2;

/* locally declare memory as remotely accessible */
MPI Win attach(win, a, 1000*sizeof(int));

/*Array ‘a’ is now accessibly by all processes in MPI_COMM WORLD*/
/* undeclare public memory */
MPI Win detach(win, a);

MPI Win free (&win) ;

MPI Finalize(); return O;

72

Data movement

= MPI provides ability to read, write and atomically modify data
in remotely accessible memory regions
— MPI_GET
— MPI_PUT
— MPI_ACCUMULATE
— MPI_GET_ACCUMULATE
— MPI_COMPARE_AND_SWAP
— MPI_FETCH_AND_OP

73

Data movement: Get

MPI_Get(
origin_addr, origin_count, origin_datatype,
target_rank,
target_disp, target_count, target_datatype,
win)

"= Move data to origin, from target

= Separate data description triples for origin and target
Target Process

RMA

Window
N ——r Ne——r

Local

Buffer

Origin Process

74

Data movement: Put

MPI_Put(
origin_addr, origin_count, origin_datatype,
target_rank,
target_disp, target_count, target_datatype,
win)

= Move data from origin, to target

= Same arguments as MPI_Get Target Process

RMA
Window

Local
Buffer

Origin Process

75

Data aggregation: Accumulate

Like MPI_Put, but applies an MPI_Op instead

— Predefined ops only, no user-defined!
Result ends up at target buffer
Different data layouts between target/origin OK, basic type

elements must match

Put-like behavior with MP1_REPLACE (implements f(a,b)=b)

— Atomic PUT Target Process

RMA
Window

Local
Buffer

Origin Process

76

Data aggregation: Get Accumulate

= Like MPIl_Get, but applies an MPIl_Op instead

— Predefined ops only, no user-defined!
= Result at target buffer; original data comes to the source

= Different data layouts between target/origin OK, basic type

elements must match

= Get-like behavior with MPI_NO_OP

— Atomic GET Target Process

RMA
Window

Local
Buffer

Origin Process

77

Ordering of Operations in MPlI RMA

= For Put/Get operations, ordering does not matter
— If you do two concurrent PUTs to the same location, the result can be
garbage
= Two accumulate operations to the same location are valid
— If you want “atomic PUTs”, you can do accumulates with
MPI_REPLACE
= All accumulate operations are ordered by default

— User can tell the MPIl implementation that (s)he does not require
ordering as optimization hints

— You can ask for “read-after-write” ordering, “write-after-write”

ordering, or “read-after-read” ordering

78

Additional Atomic Operations

= Compare-and-swap

— Compare the target value with an input value; if they are the same,
replace the target with some other value

— Useful for linked list creations — if next pointer is NULL, do something

= Fetch-and-Op

— Special case of Get accumulate for predefined datatypes — faster for
the hardware to implement

79

RMA Synchronization Models
= RMA data visibility

— When is a process allowed to read/write from remotely accessible
memory?

— How do | know when data written by process X is available for process Y
to read?

— RMA synchronization models provide these capabilities

= MPI RMA model allows data to be accessed only within an
“epoch”
— Three types of epochs possible:
e Fence (active target)

e Post-start-complete-wait (active target)

e Lock/Unlock (passive target)
= Data visibility is managed using RMA synchronization primitives
— MPI_WIN_FLUSH, MPI_WIN_FLUSH_ALL

— Epochs also perform synchronization
80

Fence Synchronization
.) Target Origin
MPI_Win_fence(assert, win)

Collective synchronization model -- assume it fonce Fence

synchronizes like a barrier

Starts and ends access & exposure epochs

Get
(usually) — ;

Everyone does an MPI_WIN_FENCE to open an
epoch

Everyone issues PUT/GET operations to read/
write data

Everyone does an MPI_WIN_FENCE to close
the epoch

81

PSCW Synchronization

Target: Exposure epoch

— Opened with MPI_Win_post

— Closed by MPI_Win_wait Target Origin

= Origin: Access epoch Post
— Opened by MPI_Win_start Start
— Closed by MPI_Win_compete Get

= All may block, to enforce P-S/C-W <
Complete

rderin
orde g Wait

— Processes can be both origins and
targets

= Like FENCE, but the target may allow a

smaller group of processes to access
its data

82

Lock/Unlock Synchronization

Active Target Mode Passive Target Mode
Post Lock
Start Get
\ Complete Unlock @

Wait

= Passive mode: One-sided, asynchronous communication
— Target does not participate in communication operation

= Shared memory like model

83

Passive Target Synchronization

p

o

int MPI_Win_lock(int lock_type, int rank, int assert,

MPI_Win win)

int MPI_Win_unlock(int rank, MPI_Win win)

~

= Begin/end passive mode epoch

— Doesn’t function like a mutex, name can be confusing

— Communication operations within epoch are all nonblocking

" Lock type

— SHARED: Other processes using shared can access concurrently

— EXCLUSIVE: No other processes can access concurrently

84

When should | use passive mode?

= RMA performance advantages from low protocol overheads

— Two-sided: Matching, queueing, buffering, unexpected receives, etc...

— Direct support from high-speed interconnects (e.g. InfiniBand)

= Passive mode: asynchronous one-sided communication
— Data characteristics:
e Big data analysis requiring memory aggregation
e Asynchronous data exchange

e Data-dependent access pattern

— Computation characteristics:
e Adaptive methods (e.g. AMR, MADNESS)

e Asynchronous dynamic load balancing

= Common structure: shared arrays

85

Topology Mapping and Neighborhood Collectives

86

Topology Mapping Basics

= First type: Allocation mapping

— Up-front specification of communication pattern

— Batch system picks good set of nodes for given topology

= Properties:
— Not widely supported by current batch systems

— Either predefined allocation (BG/P), random allocation, or “global
bandwidth maximation”

— Also problematic to specify communication pattern upfront, not

always possible (or static)

87

Topology Mapping Basics

= Rank reordering
— Change numbering in a given allocation to reduce congestion or
dilation
— Sometimes automatic (early IBM SP machines)
= Properties
— Always possible, but effect may be limited (e.g., in a bad allocation)

— Portable way: MPI process topologies

e Network topology is not exposed

— Manual data shuffling after remapping step

88

On-Node Reordering

Naive Mapping Optimized Mapping

node 0 node 2 node 0 node 2

o 2442 o 0 1955 e
0 e Topomap e e

144

3055 5800 {869

node 1 node 3 node 1 node 3

1869 0 651 a

Gottschling.and Hoefler: Productive Parallel Linear Algebra Programming with Unstructured Topology
Adaption

Off-Node (Network) Reordering

Application Topology Network Topology

Topomap

90

MPI Topology Intro

= Convenience functions (in MPI-1)

— Create a graph and query it, nothing else

— Useful especially for Cartesian topologies

e Query neighbors in n-dimensional space

— Graph topology: each rank specifies full graph ®
= Scalable Graph topology (MPI-2.2)

— Graph topology: each rank specifies its neighbors or an arbitrary
subset of the graph

= Neighborhood collectives (MPI-3.0)

— Adding communication functions defined on graph topologies
(neighborhood of distance one)

91

MPIl_Cart_create

MPI_Cart_create(MPI_Comm comm_old, int ndims, const int
*dims, const int *periods, int reorder, MPI_Comm *comm__cart)

= Specify ndims-dimensional topology
— Optionally periodic in each dimension (Torus)

= Some processes may return MPI_COMM _NULL

— Product of dims must be <=P

= Reorder argument allows for topology mapping
— Each calling process may have a new rank in the created communicator

— Data has to be remapped manually

92

MPI_Cart_create Example

int dims[3] = {5,5,5};

int periods[3] = {1,1,1};

MPIl _Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

= But we’re starting MPI processes with a one-dimensional
argument (-p X)
— User has to determine size of each dimension

— Often as “square” as possible, MPI can help!

93

MPIl_Dims_create

MPI|_Dims_create(int nnodes, int ndims, int *dims)

= Create dims array for Cart_create with nnodes and ndims

— Dimensions are as close as possible (well, in theory)

= Non-zero entries in dims will not be changed

— nnodes must be multiple of all non-zeroes

94

MPI_Dims_create Example

Int p;
MPI_Comm_size(MPl_COMM_WORLD, &p);
MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};
MPI1_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

= Makes life a little bit easier

— Some problems may be better with a non-square layout though

95

Cartesian Query Functions

= Library support and convenience!

= MPI_Cartdim_get()

— Gets dimensions of a Cartesian communicator

= MPI_Cart_get()

— Gets size of dimensions

= MPI_Cart_rank()

— Translate coordinates to rank

= MPI_Cart_coords()

— Translate rank to coordinates

96

Cartesian Communication Helpers

MPI1_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

= Shift in one dimension
— Dimensions are numbered from 0 to ndims-1
— Displacement indicates neighbor distance (-1, 1, ...)
— May return MPI_PROC_NULL
= Very convenient, all you need for nearest neighbor

communication

97

MPI_Graph_create

= Don’t use! Use one of the Dist_graph functions instead

MPI_Graph_create(MPl_Comm comm_old, int nnodes, const
int *index, const int *edges, int reorder, MPl_Comm
*comm_graph)

= nnodes is the total number of nodes

= jndex i stores the total number of neighbors for the first i
nodes (sum)

— Acts as offset into edges array

= edges stores the edge list for all processes
— Edge list for process j starts at index|j] in edges

— Process j has index[j+1]-index][j] edges

98

Distributed graph constructor

= MPI_Graph_create is discouraged

— Not scalable

— Not deprecated yet but hopefully soon

= New distributed interface:
— Scalable, allows distributed graph specification
e Either local neighbors or any edge in the graph
— Specify edge weights
e Meaning undefined but optimization opportunity for vendors!
— Info arguments
e Communicate assertions of semantics to the MPI library

e E.g., semantics of edge weights

Hoefleretal.=The Scalable Process Topology Interface of MPI 2.2

99

MPI_Dist_graph_create_adjacent

MPI|_Dist graph create adjacent(MPl _Comm comm_old, int
Indegree, const int sourcesl], const int sourceweights(], int
outdegree, const int destinations[], const int destweights]],
MPI_Info info,int reorder, MPl_Comm *comm_dist_graph)

= indegree, sources, ~“weights — source proc. Spec.

= outdegree, destinations, ~“weights — dest. proc. spec.
" info, reorder, comm_dist_graph — as usual

= directed graph

= Each edge is specified twice, once as out-edge (at the
source) and once as in-edge (at the dest)

Hoefleretal.=The Scalable Process Topology Interface of MPI 2.2 100

MPI_Dist_graph_create_adjacent

= Process O:
— Indegree: 0
— Qutdegree: 2
— Dests: {3,1}

= Process 1:
— Indegree: 3
— Qutdegree: 2
— Sources: {4,0,2}
— Dests: {3,4}

Hoefleretal.=The Scalable Process Topology Interface of MPI 2.2 101

MPI_Dist_graph_create

MPI_Dist_graph_create(MPl_Comm comm_old, int n, const int
sources|], const int degrees|], const int destinations[], const

int weights[], MPI_Info info, int reorder, MPl_Comm
*comm_dist_graph)

= n-—number of source nodes

" sources — n source nodes

= degrees — number of edges for each source

= destinations, weights — dest. processor specification
= info, reorder — as usual

= More flexible and convenient
— Requires global communication
— Slightly more expensive than adjacent specification

Hoefler-et-al.::-The Scalable Process Topology Interface of MPI 2.2 102

MPI_Dist_graph_create

= Process O:
— N:2
— Sources: {0,1}
— Degrees: {2,2}
— Dests: {3,1,4,3}
= Process 1:
— N:2
— Sources: {2,3}

— Degrees: {1,1}
— Dests: {1,2}

Hoefleretal.=The Scalable Process Topology Interface of MPI 2.2 103

Distributed Graph Neighbor Queries

= MPI_Dist_graph_neighbors_count()

MPI1_Dist_graph_neighbors count(MPl_Comm comm, int
*indegree,int *outdegree, int *weighted)

— Query the number of neighbors of calling process
— Returns indegree and outdegree!
— Also info if weighted
= MPI_Dist_graph_neighbors()
— Query the neighbor list of calling process

— Optionally return weights

MPI_Dist_graph_neighbors(MPl _Comm comm, int
maxindegree, int sources|], int sourceweights(], int
maxoutdegree, int destinationsl],int destweights(])

Hoefleretal.=The Scalable Process Topology Interface of MPI 2.2 104

Further Graph Queries

MPI_Topo test(MPl _Comm comm, int *status)

= Status is either:
— MPI_GRAPH (ugs)
— MPI_CART
— MPI_DIST_GRAPH
— MPI_UNDEFINED (no topology)

= Enables to write libraries on top of MPI topologies!

105

Algorithms and Topology

= Complex hierarchy:

Multiple chips per node;
different access to local memory
and to interconnect; multiple
cores per chip

Mesh has different bandwidths
in different directions

Allocation of nodes may not be
regular (you are unlikely to get a
compact brick of nodes)

Some nodes have GPUs

= Most algorithms designed for

simple hierarchies and ignore

network issues

25 —

00000000 -
00000000

20 —

OO0O00O0O0000O0
0000000000
O 00000000
0000000000
[efoJooXoXeXoXoXoXe]
O 00000000

15

000000000
OO0O00O0O00OO0O0

10 —

0000000000000V OO0O0OOO00
00000000000 OO0OOOOO0OOOOO

0000 -

0000
000000000000V OOOOOOO 00O

000000000000 OOOOOOOO 000

0000

‘0000
0000000000000 00000000000

0000 |
©00000000000000000000000

o
l
00 0 -

215 21 20.5 20 19.5 19 "

Recent work on general topology
mapping e.g.,
Generic Topology Mapping Strategies for

Large-scale Parallel Architectures,

Hoefler and Snir
106

Dynamic Workloads Require New, More Integrated
Approaches

= Performance irregularities mean that classic approaches to
decomposition are increasingly ineffective
— Irregularities come from OS, runtime, process/thread placement,
memory, heterogeneous nodes, power/clock frequency management
= Static partitioning tools can lead to persistent load imbalances

— Mesh partitioners have incorrect cost models, no feedback mechanism

— “Regrid when things get bad” won’t work if the cost model is
incorrect; also costly

= Basic building blocks must be more dynamic without
introducing too much overhead

107

Communication Cost Includes More than
Latency and Bandwidth

= Communication does not

happen in isolation

A4
A
A

= Effective bandwidth on shared

link is %2 point-to-point

\'4
A
\'4

bandwidth r A A

= Real patterns can involve many

\'4
A
\'4

more (integer factors)

= Loosely synchronous algorithms

A\
A4
A
A4
A

A4

ensure communication cost is
worst case

108

Halo Exchange on BG/Q and Cray XE6

2048 doubles to each neighbor
Rate is MB/sec (for all tables)

BG/Q 8 Neighbors

lrecv/Send Irecv/Isend
World 662 1167
Even/Odd 711 1452
1 sender 2873
Cray XE6 8 Neighbors

Irecv/Send Irecv/Isend
World 352 348
Even/Odd 338 324
1 sender 5507

109

Discovering Performance Opportunities

Lets look at a single process sending to its neighbors.

Based on our performance model, we expect the rate to be roughly twice
that for the halo (since this test is only sending, not sending and receiving)

System 4 neighbors 8 Neighbors

Periodic Periodic
BG/L 488 490 389 389
BG/P 1139 1136 892 892
BG/Q 2873
XT3 1005 1007 1053 1045
XT4 1634 1620 1773 1770
XE6 5507

110

Discovering Performance Opportunities

Ratios of a single sender to all processes sending (in rate)

Expect a factor of roughly 2 (since processes must also receive)

System 4 neighbors 8 Neighbors
Periodic Periodic
BG/L 2.24 2.01
BG/P 3.8 2.2
BG/Q 1.98
XT3 7.5 8.1 9.08 9.41
XT4 10.7 10.7 13.0 13.7
XE6 15.6 15.9

BG gives roughly double the halo rate. XTn and XE6 are much higher.

= |t should be possible to improve the halo exchange on the XT by scheduling the communication

= Or improving the MPIl implementation

111

Neighborhood Collectives

112

Neighborhood Collectives

= Topologies implement no communication!

— Just helper functions

= Collective communications only cover some patterns

— E.g., no stencil pattern

= Several requests for “build your own collective” functionality in
MPI

— Neighborhood collectives are a simplified version

— Cf. Datatypes for communication patterns!

113

Cartesian Neighborhood Collectives

= Communicate with direct neighbors in Cartesian topology
— Corresponds to cart_shift with disp=1

— Collective (all processes in comm must call it, including processes
without neighbors)
— Buffers are laid out as neighbor sequence:
e Defined by order of dimensions, first negative, then positive
e 2*ndims sources and destinations

e Processes at borders (MPI_PROC_NULL) leave holes in buffers (will not be
updated or communicated)!

T. Hoeflerand J."L. Traeff: Sparse Collective Operations for MPI 114

Cartesian Neighborhood Collectives

= Allgather
= Buffer ordering example: / 6 w
. :
0 |« >»|1|e>|2|e Prqcess 0
(¢ ¢ : j i\rndbuﬁer
2 || <
(i T : T i 4_3 k/ ecvbuffer
v ; v L/ /
(64——»74——»8 l I If/
A) A | A

(
|
(

D K.}\

T. Hoeflerand J. "L Traeff: Sparse Collective Operations for MPI 115

Graph Neighborhood Collectives

= Collective Communication along arbitrary neighborhoods

— Order is determined by order of neighbors as returned by (dist_)
graph_neighbors.

— Distributed graph is directed, may have different numbers of send/
recv neighbors

— Can express dense collective operations ©

— Any persistent communication pattern!

T. Hoefler-and J. L. Traeff: Sparse Collective Operations for MPI 116

MPI_Neighbor_allgather

MPI1_Neighbor_allgather(const void* sendbuf, int sendcount,
MPI| Datatype sendtype, void™ recvbuf, int recvcount,
MPI|_Datatype recvtype, MPlI_Comm comm)

= Sends the same message to all neighbors
= Receives indegree distinct messages

= Similar to MPIl_Gather

— The all prefix expresses that each process is a “root” of his

neighborhood

= Also a vector “v” version for full flexibility

117

MPI_Neighbor_alltoall

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount,
MPI_ Datatype sendtype, void* recvbuf, int recvcount,
MPI|_Datatype recvtype, MPlI_Comm comm)

= Sends outdegree distinct messages
= Received indegree distinct messages

= Similar to MPI_Alltoall

— Neighborhood specifies full communication relationship

= Vector and w versions for full flexibility

118

Nonblocking Neighborhood Collectives

MPI_Ineighbor_allgather(..., MPl_Request *req);
MPI _Ineighbor_alltoall(..., MPl_Request *req);

= Very similar to nonblocking collectives
= Collective invocation

= Matching in-order (no tags)

— No wild tricks with neighborhoods! In order matching per
communicator!

119

Topology Summary

= Topology functions allow users to specify application
communication patterns/topology
— Convenience functions (e.g., Cartesian)

— Storing neighborhood relations (Graph)

* Enables topology mapping (reorder=1)
— Not widely implemented yet

— May requires manual data re-distribution (according to new rank
order)

= MPI does not expose information about the network topology
(would be very complex)

120

Neighborhood Collectives Summary

= Neighborhood collectives add communication functions to

process topologies

— Collective optimization potential!

Allgather

— One item to all neighbors

Alltoall

— Personalized item to each neighbor

= High optimization potential (similar to collective operations)

— Interface encourages use of topology mapping!

121

Acknowledgments

= Thanks to Torsten Hoefler and Pavan Balaji for some of the
slides in this tutorial

122

